Polysemy Deciphering Network for Robust Human–Object Interaction Detection

نویسندگان

چکیده

Human–Object Interaction (HOI) detection is important to human-centric scene understanding tasks. Existing works tend assume that the same verb has similar visual characteristics in different HOI categories, an approach ignores diverse semantic meanings of verb. To address this issue, paper, we propose a novel Polysemy Deciphering Network (PD-Net) decodes polysemy verbs for three distinct ways. First, refine features be polysemy-aware through use two modules: namely, Language Prior-guided Channel Attention (LPCA) and Prior-based Feature Augmentation (LPFA). LPCA highlights elements human object appearance each category identified; moreover, LPFA augments pose spatial using language priors, enabling classifiers receive hints reduce intra-class variation Second, introduce Polysemy-Aware Modal Fusion module, which guides PD-Net make decisions based on feature types deemed more according priors. Third, relieve problem sharing semantically categories. Furthermore, expedite research problem, build new benchmark dataset named HOI-VerbPolysemy (HOI-VP), includes common (predicates) have real world. Finally, deciphering verbs, our demonstrated outperform state-of-the-art methods by significant margins HICO-DET, V-COCO, HOI-VP databases. Code data paper are available at https://github.com/MuchHair/PD-Net .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relieving Polysemy Problem for Synonymy Detection

In order to automatically identify noun synonyms, we propose a new idea which opposes classical polysemous representations of words to monosemous representations based on the “one sense per discourse” hypothesis. For that purpose, we apply the attributional similarity paradigm on two levels: corpus and document. We evaluate our methodology on well-known standard multiple choice synonymy questio...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Deciphering robust portfolios

Robust portfolio optimization has been developed to resolve the high sensitivity to inputs of the Markowitz mean-variance model. Although much effort has been put into forming robust portfolios, there have not been many attempts to analyze the characteristics of portfolios formed from robust optimization. We investigate the behavior of robust portfolios by analytically describing how robustness...

متن کامل

Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) ...

متن کامل

Automatic Biomedical Term Polysemy Detection

Polysemy is the capacity for a word to have multiple meanings. Polysemy detection is a first step for Word Sense Induction (WSI), which allows to find different meanings for a term. The polysemy detection is also important for information extraction (IE) systems. In addition, the polysemy detection is important for building/enriching terminologies and ontologies. In this paper, we present a nov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2021

ISSN: ['0920-5691', '1573-1405']

DOI: https://doi.org/10.1007/s11263-021-01458-8